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Abstract. We investigate transport properties of electrons in a one-dimensional (1D) disordered system
consisting of a host chain attached with specific impurities. Every impurity, labelled by j and possessing
site energy εj , is side-coupled to two adjacent sites of the host chain with hopping integral t1j and changes

the original nearest-neighbor (NN) hopping to t2j . We show that if t2j = −εj/2 and t1j =
√

t20 − (εj/2)2 for
all impurities, with t0 being the NN hopping of the host chain, the states in the whole band are extended,
even though εj ’s and positions of impurities are random. The phases of these states, however, are spatially
random, corresponding to finite free path and infinite localization length in such a 1D system.

PACS. 72.15.Rn Localization effects (Anderson or weak localization) – 72.80.Ng Disordered solids –
73.20.Jc Delocalization processes

Since the pioneering work of Anderson on the nature of
states in disordered systems [1], the metal-insulator transi-
tion originated from the Anderson localization has drawn
extensive attention [2,3]. It has been predicted from the
one-parameter scaling theory that all the states are lo-
calized in one-dimensional (1D) and 2D disordered sys-
tems [4]. In 1D, however, several exceptional disordered
models emerge in which some extended states at spe-
cific energies exist. One example is the random-dimer
model which has one extended state at the resonance
energy [5]. This idea has been extended to continu-
ous Kronig-Penny model with randomly placed identical
multibarrier structures in which several reflectionless res-
onances were found [6]. It was shown by Maciá et al. that
in Kronig-Penny models with short-range correlated dis-
order there exist infinitely many resonances that give rise
to a band of extended states [7]. Extended states can exist
in a range of energy in models with long-range correlated
disorder [8,9]. Recently it is shown that some states ex-
hibit extended characteristics in 1D Anderson model with
long-range hoppings [10]. A specific type of impurities in
1D system, each of which is side-coupled to two nearest-
neighbor sites of the host chain, is proposed and investi-
gated in reference [11]. In this paper we prove that for this
type of disorder the states in the whole band are fully ex-
tended, but the phases of wavefunctions are random in the
space due to the scattering of impurities, if the hopping
integrals and site energy of every impurity satisfies given
conditions. In this sense the localization length is infinite,
independent of the energy. The combination of the full
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Fig. 1. Impurities, denoted by dj , doubly side-coupled to a
host chain for which the sites are labelled as ci.

transmission and the random phases leads to a classical-
like ballistic behavior of the particle diffusion. On the
other hand, this provides a possible method for controlling
the phase of a wavefunction by designing the energy and
coupling strength of impurities in a 1D conductor.

The system consists of a 1D host chain and attached
impurities with random site energies and positions, as
shown in Figure 1. An impurity, at position j and hav-
ing site energy εj, is side-coupled to two adjacent sites of
the host chain, j and j + 1, with hopping integral t1j and
changes the original nearest-neighbor (NN) hopping be-
tween them to t2j . The Hamiltonian of the model can be
expressed as

H =
∑
i/∈S

t0

(
c†ici+1 + h.c.

)
+

∑
j∈S

[
εjd

†
jdj

+ t1j

(
c†jdj + c†j+1dj + h.c.

)
+ t2j

(
c†jcj+1 + h.c.

)]
, (1)

where c†i and d†j are the creation operators for electron
on the ith site of the host chain and on the impurity at
position j, respectively, t0 is the NN hopping integral in
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Fig. 2. Mean value of transmission coefficient averaged over
the whole band (Tj) as a function of t1j and t2j for εj = 0.4t0.

the host chain, and S is the set of all impurity positions.
Here, the position of an impurity j is defined as that of the
left one of two adjacent sites in the host chain to which
the impurity is side-coupled.

If we consider the transmission of an electron through
one impurity labelled as j in set S, a plane wave incident
from the left part of the host chain will be partially trans-
mitted to the right part with transmission amplitude τj .
From the Schrödinger equation Hψ = Eψ, with ψ being
the wavefunction and E the energy of electron, τj is energy
dependent and can be easily calculated as

τj(k) =

2it0 sin k[t21j − t2j(εj − 2t0 cos k)]

(t2j + t0e−ik)
[
(e−ikt0 − t2j) (εj − 2t0 cos k) + 2t21j

] , (2)

where k is the wave vector of the incident electron de-
termined by E = 2t0 cos k. Thus, for given values of εj ,
t1j and t2j , there may exist finite number of resonance
energies for which the transmission coefficient |τj(k)|2 is
one. However, if the impurity level is in the host band
(|εj | ≤ 2t0), and t1j and t2j satisfy

t1j =
√
t20 − (εj/2)2, t2j = −εj/2, (3)

one has

τj(k) =
e2 i k

(
2 t0 − e−ik εj

)
2 t0 − eik εj

, (4)

and the corresponding transmission coefficient |τj |2 = 1,
independent of the energy of electrons and εj . This means
that under conditions (3) impurity j is transparent for
electrons in the whole band. In order to show how the
whole-band transmission coefficient is changed if the val-
ues of t1j and t2j are shifted from conditions (3), in
Figure 2 we show the mean value of the transmission co-
efficient averaged over the whole band, defined as Tj =
1
2π

∫ 2π

0 dk|τj(k)|2, as a function of t1j and t2j . Due to the
averaging over the whole band, Tj is not related to the
transmission of an electron with a given energy, but is a

measure of how strict the condition (3) is for the whole-
band full transmission. The top of the hill in Figure 2
(Tj = 1) is at values of t1j and t2j satisfying condition (3),
corresponding to the full transmission in the whole band.
The slope near the top of the hill is rather small, imply-
ing relatively large tolerance of condition (3) for the full
transmission.

Then we consider a chain containing a set of impuri-
ties, random in positions and site energies (εj ’s) located
within the host band, but with all the corresponding hop-
pings t1j and t2j satisfying condition (3). If an electron,
with any energy in the band, is incident from the left, it
will completely be transmitted to the right, in spite of the
randomness in the impurity positions and site energies.
By this way we define a new type of 1D random systems
in which the states of the whole band are extended.

Although the transparency is complete for the whole
band, the phases of electron wavefunctions are spatially
random due to the randomness of impurity positions and
site energies. By passing through the jth impurity the
electron wave function acquires a phase determined with

φj = 2k + 2 arcsin
εj sink√

4t20 − 4t0εj cos k + ε2j

. (5)

If εj’s are uniformly distributed in range of [−W/2,W/2],
the phase shift acquired in passing through an impurity is
also random, ranging from

φ01 = 2k − arcsin
W sink√

4t20 + 2t0W cos k +W 2/4

to

φ02 = 2k + arcsin
W sin k√

4t20 − 2t0W cos k +W 2/4
,

and satisfies a probability depending on wave vector k.
This probability can be written as

P (φj) =




t0[A sin(φj−k)−sin(
φj
2 −k) sin

φj
2 sin(φj−2k)]

A2W ,

for φj in between φ01 and φ02,

0, otherwise.

(6)

with

A = sin2

(
φj

2
− k

)
− sin2 k.

From this we can calculate the average phase shift through
one impurity, 〈φj〉, as a function of wave vector k for dif-
ferent disorder strength W ,

φ̄j = 2k +
sin k(η− − η+)

W

+
t0 sin 2k
W

ln
η− − 2t0 cos k +W/2
η+ − 2t0 cos k −W/2

, (7)

with

η± =

√(
W

2
± 2t0 cos k

)2

+ 4t20 sin2 k.
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The mean free path of electrons is determined by l̄ =
2π/[(〈φj〉−2k)n] depending on k, with n being the density
of impurities. For most k states the mean free path is finite
except specific values of k at which 〈φj〉 − 2k = 0.

The characteristics of electron motion in such systems
can be illustrated by the diffusion of a wave packet. We
suppose that at t = 0 a δ-function wave packet is lo-
cated at site i = 0 in a system where S is the set of
all odd numbers. The evolution of the wave packet can be
numerically solved from the time-dependent Schrödinger
equation. The second moment of the corresponding spatial
probability distribution can be written as

σ2(t) =
∑

i

(i− i0)2|ψi(t)|2, (8)

where ψi(t) is the wave function at site i and time t. The
long-time asymptotic limit of σ2(t) can be fitted with a
power law [12,13],

σ2 ∼ Atα, (9)

where A is a prefactor and α is the exponent. The value of
exponent α characterizes the behavior of electron motion:
α < 1 corresponds to the localization, α = 1 is for the
ordinary diffusion, α > 1 is related to the super-diffusion,
and α = 2 stands for the ballistic motion. From Figure 3,
the motion of electrons is ballistic with α ∼ 2, as can be
expected from the complete transparency for the whole
band. By increasing the disorder strength W and keeping
the average impurity site energy unchanged, A is slightly
degreased, as can be seen from the comparison between
the solid and dotted lines in Figure 3. This suggests the
weak effect of this type of disorder on the motion of elec-
trons. On the other hand, by varying the average impurity
site energy, a large change of A is caused, as shown by the
dashed line. This is due to the variation of the band width
from the change of the average value of εj .

In practice, one of such impurities can be produced by
attaching an atom or an atom cluster to a host chain such
as conducting polymer or carbon nanotube. Condition (3)
for the full transmission of the whole band requires some
method of tuning the distance of the impurity from the
host chain and the spacing between two host sites to which
the impurity is attached. This can be realized with care-
ful choosing of the impurity energy level and the attaching
method. In a mesoscopic system such an impurity can be
used for adjusting the phase of a wave function and keep-
ing its module unchanged. This may be useful for the ma-
nipulation of quantum states in future nano-scale devices.

This work was supported by National Foundation of Natural
Science in China Grant Nos. 10074029 and 60276005,
and by the China State Key Projects of Basic Research
(G1999064509).
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Fig. 3. Evolution of the second moment σ2 for a wave packet.
The inset is the log-log plot. Solid line: εj = 0 for all impurities,
corresponding to W = 0. It can be fitted with parameters
A = 2.0 and α = 2.0. Dotted line: εj ’s are uniformly distributed
in [−1.5t0, 1.5t0], and the obtained fitting parameters are A =
1.606 and α = 2.021. Dashed line: εj = −t0 for all impurities,
it is fitted with A = 4.874 and α = 2.009.
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